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L I F E  PREDICTION TECHNOLOGIES FOR AERONAUTICAL PROPULSION SYSTEMS 

Michael A .  McGaw 

ABSTRACT 

Fatigue and fracture problems continue to occur in aeronautical gas turbine 
engines. Components whose useful life is limited by these failure modes include 
turbine hot-section blades, vanes, and disks. Safety considerations dictate that 
catastrophic failures be avoided, while economic considerations dictate that 
noncatastrophic failures occur as infrequently as possible. The decision in design 
is therefore making the tradeoff between engine performance and durability. The 
NASA Lewis Research Center has contributed to the aeropropulsion industry in the 
area of life prediction technology for over 30 years, developing creep and fatigue 
life prediction methodologies for hot-section materials. At the present time, 
emphasis is being placed on the development of methods capable of handling both 
thermal and mechanical fatigue under severe environments. Recent accomplishments 
include the development of more accurate creep-fatigue life prediction methods such 
as the total strain version of Lewis' Strainrange Partitioning (SRP) and the 
HOST-developed Cyclic Damage Accumulation (CDA) model. Other examples include the 
development of a more accurate cumulative fatigue damage rule - the Double Damage 
Curve Approach (DDCA), which provides greatly improved accuracy in comparison with 
usual cumulative fatigue design rules. Other accomplishments in the area of 
high-temperature fatigue crack growth may also be mentioned. 
looking to the future and are beginning to do research on the advanced methods which 
will be required for development of advanced materials and propulsion systems over 
the next 10 to 20 years. 

Finally, we are 
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PERFORMANCE VERSUS DURABILITY 

Fatigue and fracture problems continue to occur throughout aeronautical gas turbine 
engines. Safety considerations dictate that life-threatening catastrophic failures 
be avoided, and economic considerations dictate that noncatastrophic failures occur 
as infrequently as possible. The failure rate, however, can be related directly to 
the performance extracted from the machine. 
performance versus durability. 
performance, we must view lack of adequate durability as a constraint to the desired 
performance. 
tradeoffs between the two. Performance may take a variety of forms, some of which 
are listed in the figure. Similarly, various failure modes are noted which give 
rise to the overall durability. Nowhere is the tradeoff more critical than in the 
hot section, where all of the failure modes are present in varying degrees. 

We thus have the perennial dichotomy: 
Because the primary driver for aeropropulsion is 

Knowledge of both aspects is necessary to understand and quantify the 
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GAS TURBINE FATIGUE AND FRACTURE PROBLEM AREAS 

This figure illustrates typical components that have exhibited histories of limited 
durability. Compressor blades, combustor liners, guide vanes, turbine blades, 
disks, shafts, bearings, and spacers are just a few of the more common components 
that have exhibited cyclic crack initiation, propagation, and fracture phenomena. 
These failure phenomena arise because of repeated thermal and/or mechanical loading 
induced by the service cycle. 
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LEWIS RESEARCH CENTER CONTRIBUTIONS 

At the Lewis Research Center, we have aided the aeropropulsion industry by 
concentrating on developing fracture and elevated-temperature fatigue life 
prediction methods. As aeropropulsion became more sophisticated and advanced 
materials were developed, we increased our level of intensity and degree of 
sophistication in life prediction modeling. At the present time, emphasis is placed 
on methods capable of dealing with both thermal and mechanical fatigue under severe 
environments. The methods listed in the heavy-lined box are the ones we are 
currently pursuing, and as such, they are too new to have been used in hardware. We 
are also looking to the needs of the future and are beginning to do research on the 
advanced methods that will be required of advanced materials and propulsion systems 
over the next 10 to 20 years. 
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HIGH-TEMPERATURE FATIGUE CRACK INITIATION 

In this figure, we compare the predictive accuracy of two relatively recent (1983, 
1984) isothermal life prediction methods for fatigue crack initiation (0.030-in.- 
length surface crack): the HOST Cyclic Damage Accumulation (CDA) model developed by 
Pratt & Whitney under contract to Lewis, and the total strain version of Lewis' 
Strainrange Partitioning (TS-SRP). Note the rather sizeable factors of 23 in our 
inability to predict the high-temperature, low-cycle fatigue lives of coupons of a 
cast nickel-base turbine alloy. Factors of safety of nearly an order of magnitude 
on average life would have to be applied if these methods were t o  be used in a 
design situation. While this appears to be a very large factor, it is considerably 
less than would be required by alternate methods. 
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COMPLEX COMPONENT LOADING HISTORIES 

Mission profiles resolve into complex thermal and mechanical loading histories on 
many components. Components whose lives are limited as a result undergo creep and 
fatigue in varying and interacting degrees, which eventually lead to failure. One 
such typical component is a hot-section turbine blade. In this figure we see the 
mechanical load history induced by the mission cycle as seen from the life-limiting, 
or critical, location of the turbine blade. 
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A MORE ACCURATE CUMULATIVE FATIGUE DAMAGE RULE 

D d[ ($7 

When considering the life of components subjected to complex mechanical loading 
histories, it is common to use a fatigue crack initiation life criterion in 
conjunction with a suitable damage accumulation expression. Traditionally, the 
damage accumulation expression used is the classical Linear Damage Rule. 
rule simplifies life prediction calculations, it can often result in unconservative 
designs, especially under certain loading conditions. An advancement in increasing 
the accuracy of life predictions by using a nonlinear damage accumulation rule was 
made at Lewis recently. This new expression, called the Double Damage Curve 
Approach, accounts for loading level dependence in damage evolution. 
increase in predictive accuracy is substantial, as much as nearly an order of 
magnitude improvement over the Linear Damage Rule. 

While this 
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HIGH-TEMPERATURE FATIGUE CRACK PROPAGATION MODEL 

High and low-temperature cyclic crack propagation life predictions based upon the 
concepts of path-independent integrals and crack tip oxidation mechanisms are shown 
for turbine alloys. This life prediction method is the result of several years of 
research conducted by H.W. Liu of Syracuse University under the HOST sponsorship of 
NASA Lewis. Note again the rather sizeable scatter of factors of three on crack 
propagation rate even for well-controlled laboratory coupon tests. 
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COMBUSTOR LINER STRUCTURAL AND LIFE ANALYSIS 

An application of the Lewis-originated creep-fatigue life prediction method, 
Strainrange Partitioning (for crack initiation), is shown in this figure. Pratt & 
Whitney modified the approach to suit their unique requirements and used the method 
in the design and evaluation of combustor liners in the JT9D high-bypass-ratio 
engine. 
bound lines. 
which the Pratt & Whitney version of the method is calibrated to the failure 
behavior of real hardware. The variation in predicted lives results from different 
engine usage which can be accommodated by the predictive method. 

Factors of about 22 in cyclic lifetime are noted by the upper and lower 
This remarkable good accuracy is obtained, in part, by the manner in 
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TURBINE BLADE STRUCTURAL AND LIFE ANALYSIS 

In another application of the Lewis-originated creep-fatigue life prediction method, 
Strainrange Partitioning, the General Electric Company analyzed an air-cooled 
turbine blade, making an assessment of expected service life. 
blade, a first-stage, high-pressure turbine blade, is subjected to cyclic thermal 
straining in the tip cap region because of the service history involved. 
conducting a thermal analysis and a nonlinear structural analysis of the cap region, 
an assessment of component life was performed. 
laboratory experiments on the blade alloy for the temperature-strain history 
calculated from the analysis. Strainrange Partitioning was found to predict 
component life over a range which spanned the observed service life. 

This particular 
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BRITTLE MATERIALS DESIGN METHOD 

rn 

CONTROL DIMENSIONS FRACTURE STRESSES 
I INDICES OF SPECIMENS OF SPECIMENS 

The design of brittle ceramics differs from that of ductile metals because of the 
inability of ceramic materials to redistribute high local stresses caused by 
inherent flaws. 
analysis employing the weakest link theory be performed if the component reliability 
is to be determined. 
purpose design programs, standards, nondestructive evaluation (NDE) expertise, and 
codes of procedure has prompted NASA Lewis to initiate research focused on ceramics 
for heat engines at the beginning of this decade. One of the early accomplishments 
of this effort has been the development of the unique, public-domain design program 
called Structural Ceramics Analysis and Reliability Evaluation (SCARE). 
under development, with new enhancements in improved fast fracture and time- 
dependent reliability analysis being added and validated. 

Random flaw size and orientation require that a probabilistic 

The lack of adequate design technology, such as general 

It is still 
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NONDESTRUCTIVE EVALUATION (NDE) TECHNOLOGY 

The need for nondestructive materials characterization is indicated where local 
properties are critical or where the presence, identity, and distribution of 
potentially critical flaws can only be assessed statistically. In the latter case, 
flaws can be so microscopic, numerous, and dispersed that it is impractical t o  
resolve them individually. Large populations of nonresolvable flaws may interact 
with each other (e.g., surface versus volume flaws) or with morphological 
anomalies. These interactions would be manifested as degraded bulk properties 
(e.g., deficiencies in strength and toughness). 
discrete critical flaws, it may still be susceptible to failure because of 
inadequate or degraded intrinsic mechanical properties. 
material processing and/or degradation under aggressive service environments. It is 
important, therefore, to have nondestructive methods for quantitatively 
characterizing mechanical properties. 

Although a structure may be free of 

This can arise from faulty 
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